Prof. Dr. rer. nat. Christine R. Rose


Intracellular ion signalling and neuron-glia interaction at central synapses

Maintenance of ion gradients across the plasma membrane is a fundamental property of living cells. In the nervous system, these ion gradients are the basis for electrical excitability and electrical signaling. In addition, ions act as intracellular second messengers, and dynamic changes in the cytosolic ion concentration regulate many cellular processes.

Our institute is devoted to the study and elucidation of intracellular ion signalling in the vertebrate brain, its cellular pathways and its functional consequences under physiological as well as pathophysiological conditions. A special focus is set on the function of astrocytes and their interaction with neurons at glutamatergic synapses of the mouse hippocampus, cortex and cerebellum. Furthermore, we are mainly concentrating on elucidating intracellular sodium signalling as a new form of ionic excitability of neurons and astrocytes.

To this end, we employ dynamic high-resolution imaging such as multi-photon laser scanning microscopy and various electrophysiological techniques in both neurons and glial cells of the mouse brain in situ.

Selected Publications

see also: undefinedPubMed

  1. Langer J, Gerkau NJ, Derouiche A, Kleinhans C, Moshrefi-Ravasdjani B, Fredrich M, Kafitz KW, Seifert G, Steinhaeuser C & Rose CR (2017): Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet. Glia 65(2):293-308. undefinedPubMed
  2. Rose CR, Ziemens D, Untiet V & Fahlke C (2017): Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull. doi: 10.1016/j.brainresbull.2016.12.013. [Epub ahead of print]. undefinedPubMed
  3. Moshrefi-Ravasdjani B, Dublin P, Seifert G, Jennissen K, Steinhäuser C, Kafitz KW, Rose CR. (2017): Changes in the proliferative capacity of NG2 cell subpopulations during postnatal development of the mouse hippocampus. Brain Struc Function, Mar;222(2):831-847. undefinedPubMed
  4. Rose CR & Chatton JY (2016): Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neurosci 26(323):121-34. undefinedPubMed
  5. Rose CR & Verkhrastky A (2016): Glial ionic excitability: The role for sodium. Introduction to a Special Issue on Glial Na+ signalling (eds. Rose CR & Verkhratsky A), Glia Oct;64(10):1609-10. undefinedPubMed
  6. Mondragão MA, Schmidt H, Kleinhans C, Langer J, Kafitz KW & Rose CR (2016): Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons. J Physiol. 594(19):5507-27. undefinedPubMed
  7. Karus C, Mondragão M, Ziemens D & Rose CR (2015): Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity. Glia 63(6):936-57 doi: 10.1002/glia.22793. undefinedPubMed
  8. Langer J, Stephan J, Theis M, Rose CR (2012): Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia 60:239-52. undefinedPubMed
  9. Langer J, Rose CR (2009). Synaptically-induced sodium signals in hippocampal astrocytes in situ. J Physiol, 587: 5859-5877. undefinedPubMed
  10. Filosa A, Paixão S, Honsek SD, Carmona M, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T, Kullander K, Rose CR, Pasquale EB, Klein R. (2009) Neuron-glia communication via EphA4/ephrinA3 modulates glial glutamate transporter levels and synaptic plasticity. Nature Neurosci, 12: 1285-1292. undefinedPubMed


Prof. Dr. rer. nat. Christine R. Rose

Institute of Neurobiology
Faculty of Mathematics and Natural Sciences
Heinrich Heine University
Universitätsstraße 1
40225 Düsseldorf
Tel.: +49 211 81-13416
Fax: +49 211 81-13415
Verantwortlich für den Inhalt: E-Mail sendenNeuroscience Network Düsseldorf