Jump to contentJump to search
Symbolbild Neurone im Raum
Kurt Gottmann

Group leader

Prof. Dr. Kurt Gottmann
Institute of Neuro- and Sensory Physiology
Universitätsstraße 1
40225 Düsseldorf

Research Interest

The Gottmann lab is interested in both basic neurobiological research and translational neuroscience.

Our basic research projects are centered around the function of synaptic adhesion molecules in synapse formation, maturation and plasticity. For example, we are analysing the molecular cooperation of several adhesion systems in the control of presynaptic vesicle clustering. In addition, we are studying the roles of adhesion proteins at mature synapses and in long-term stability of synapses.

In translational neuroscience, we are mainly working on the molecular mechanisms involved in synaptotoxicity in Alzheimer`s disease. Our major experimental approach is to use iPS cell-derived human neurons as model systems for investigating the molecular mechanisms of synaptopathies, aiming at identifying new molecular targets for pharmocotherapies.

Specific Projects
  • Cooperation of synaptic adhesion molecules in the control of vesicle accumulation at nascent synapses
  • Function of synaptic adhesion molecules at mature synapses, e.g. in vesicle cycling
  • Role of synaptic adhesion molecules in organizing antero- and retrograde modulatory signaling mechanisms
  • Involvement of synaptic adhesion molecules in synapse impairment and synapse loss induced by β-amyloid peptides
  • iPS cell-derived human neurons as model systems to study molecular mechanisms of synaptopathies
Selected Publications
  1. Müller-Schiffmann, A., März-Berberich, J., Andreyeva, A., Rönicke, R., Bartnik, D., Brener, O., Kutzsche, J., Horn, A.H., Hellmert, M., Polkowska, J., Gottmann, K., Reymann, K.G., Funke, S.A., Nagel-Steger, L., Moriscot, C., Schoehn, G., Sticht, H., Willbold, D., Schrader, T., Korth, C. (2010). Combining independent drug classes into superior, synergistically acting hybrid molecules. Angew. Chem. Int. Ed. Engl. 49:8743-8746. PubMed
  2. Stan, A., Pielarski, K.N., Brigadski, T., Wittenmayer, N., Fedorchenko, O., Gohla, A., Lessmann, V., Dresbach, T., Gottmann, K. (2010). Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc. Natl. Acad. Sci. USA 107:11116-11121. PubMed
  3. Jüngling, K., Eulenburg, V., Moore, R., Kemler, R., Lessmann, V., Gottmann, K. (2006) N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. J. Neurosci. 26:6968-6978. PubMed
  4. Varoqueaux, F., Aramuni, G., Rawson, R.L., Mohrmann, R., Missler, M., Gottmann, K., Zhang, W., Südhof, T.C., Brose, N. (2006). Neuroligins determine synapse maturation and function. Neuron, 51:741-754. PubMed
  5. Copi, A., Jüngling, K., Gottmann, K. (2005). Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network. J. Neurophysiol. 94:4538-4543. PubMed
  6. Kattenstroth, G., Tantalaki, E., Südhof, T.C., Gottmann, K., Missler, M. (2004). Postsynaptic N-methyl-D-aspartate receptor function requires alpha-neurexins. Proc. Natl. Acad. Sci. USA 101: 2607-2612. PubMed
  7. Missler, M., Zhang, W., Rohlmann, A., Kattenstroth, G., Hammer, R.E., Gottmann, K., Südhof, T.C. (2003). Alpha-Neurexins couple Ca2+-channels to synaptic vesicle exocytosis. Nature 423: 939-948. PubMed
  8. Jüngling, K., Nägler, K., Pfrieger, F.W., Gottmann, K. (2003). Purification of embryonic stem cell-derived neurons by immunoisolation. FASEB J. 17:2100-2102. PubMed
  9. Mohrmann, R., Werner, M., Hatt, H., Gottmann, K. (1999). Target specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons. J. Neurosci. 19: 10004-10013. PubMed
  10. Rumpel, S., Hatt, H., Gottmann, K. (1998). Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci. 18:8863-8874. PubMed
Responsible for the content: